
Army Research Laboratory

Allocating Tactical High-Performance Computer (HPC)
Resources to Offloaded Computation in Battlefield Scenarios

by Tamim I. Sookoor, David L. Bruno, and Dale R. Shires

ARL-TR-6757 December 2013

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated
by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6757 December 2013

Allocating Tactical High-Performance Computer (HPC)
Resources to Offloaded Computation in Battlefield Scenarios

Tamim Sookoor, David Bruno, and Dale Shires
Computation and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

December 2013 Final

Allocating Tactical High-Performance Computer (HPC) Resources to Offloaded
Computation in Battlefield Scenarios

ARL-TR-6757

Approved for public release; distribution is unlimited.

December 2013

R.0006163.13Tamim I. Sookoor
David L. Bruno
Dale R. Shires

U.S. Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5066

We envision a battlefield of the future where computation plays a pivotal role in providing the Army an advantage over its
enemy. The ability for computationally intensive tasks to be carried out in real-time at the front lines will give Soldiers access
to a wealth of information that they currently do not possess. This information could range from suggesting optimal locations
from which to observe points of interest to locating snipers based on the shock waves of bullets. In order for these, and yet
unknown applications, to be implemented a considerable computational capability has to be mobilized with an army into the
battlefield. Mobile devices will soon become an integral part of a Soldier’s toolkit as the military is attempting to introduce
smartphones into combat. In order for the potential of these tools to be realized, their fundamental weakness of limited battery
life has to be addressed. One approach to increasing energy efficiency of mobile devices is to offload computationally intensive
applications to more capable machines. While a number of approaches to offloading have been proposed, none so far have
addressed the issue of intelligently scheduling the offloaded applications to a cluster of heterogeneous machines. This paper
describes the state-of-the-art in techniques necessary to implement such a scheduler and presents a plan for a project to
implement such a scheduler.

computation offloading, task allocation

28

Tamim I. Sookoor

410-278-6993Unclassified Unclassified Unclassified
UU

ii

Contents

1. Introduction 1

2. Statement of the Scientific Problem 2

3. Background and Related Work 3

3.1 Centralized Resource Allocation . 3

3.2 Distributed Resource Allocation . 5

3.3 Offloading to Mobile Devices . 7

4. Requirements 10

5. Army Relevance 12

6. Technical Challenges 12

7. Conclusions 13

8. References 14

List of Symbols, Abbreviations, and Acronyms 19

Distribution List 20

iii

1. Introduction

There has been a recent effort in the military to equip Soldiers with smartphones(1–11). The
availability of these resources on the tactical edge enables Soldiers to be empowered through a
large number of applications. These applications range from simply providing a Soldier with his
or her location through the Global Positioning System (GPS) functionality of the phone, to using
the built-in microphones to locate the source of a gunshot, or provide Soldiers information on the
best locations from which to observe an enemy. As with any battery powered device, a major
constraint when providing the Soldier with sophisticated applications on a mobile device is the
limited lifetime of the device between charges.

In order for battlefield computation on mobile devices to become a reality, a number of
constraints have to be overcome. The first is the environment in which it will be deployed, which
could be harsh and unpredictable. The theater of operation could vary from urban terrain to
deserts and the computing framework should adapt to the challenges of each environment.
Mobility poses a number of challenges as it will lead to frequent changes in network topology
requiring the system to be robust to intermittent connectivity. This mobile device computing
framework would be used by Soldiers who may not have the technical knowledge to operate a
complex system; therefore, the system should be automated as much as possible providing the
Soldiers with an intuitive user interface. In order to allow a large number of applications to be
developed, some of which may not even be envisioned yet, the computation framework should
make application development easy by not overburdening programmers with having to annotate
code or learn new programming abstractions. Finally, security is a major concern for a military
system; therefore, the battlefield computing network should be hardened against malicious attacks
and vulnerabilities.

One approach to maximizing the battery life of mobile devices is offloading computationally
intensive applications to personal computer (PC) or server class devices. In addition to reducing
the computational load on the devices, offloaded applications benefit from being able to execute
faster on more capable machines and producing better output due to the availability of more
resources on a PC or server. A number of projects have demonstrated the benefits of such an
approach. For instance, Kemp et al. (12) demonstate the benefit of offloading for image, audio,
and text processing as well as Artificial Intelligence (AI), 3-D rendering, and security.

Enabling offloading in a tactical situation, such as a battlefield, results in a number of challenges.

1

The first is providing server class devices that are accessible to the mobile devices. Offloading
solutions such as Cuckoo(12), MAUI(13), COMET(14), and ThinkAir(15) offload applications
via Wi-Fi or 3G networks to servers or commercial clouds such as Amazon EC2. Soldiers in a
battlefield cannot rely on Wi-Fi connections or cellular networks to connect to servers or clouds.
Instead, we propose utilizing mobile High-Performance Computer (HPC) resources made
available at the front lines in the form of tactical cloudlets (16). Offloading applications from
mobile devices in a battlefield to tactical HPC assets poses a number of challenges not faced by
traditional offloading frameworks.

While there are aspects in these systems that are applicable to a military heterogeneous network
of mobile devices and tactical HPCs, there are still a number of areas that are not sufficiently
addressed. The first is the generalizability of their application development processes. Most of
the existing systems have been tested on a small set of applications and the ease of use of their
programming models for military applications has not been assessed. The second is the methods
used for application decomposition during offloading. Different systems decompose applications
at different granularities and thus, may be more appropriate for different classes of applications.
A computation platform composed of mobile devices should be optimized to efficiently
decompose applications that will be of most interest to the military, while being flexible enough
to decompose yet unforseen applications. Existing systems rely on Wi-Fi and cellular networks
for communication, which may not be available in the environments where such a system would
operate. Thus, alternative means for communication are necessary. Security is not a major
concern in most existing systems with reputation based approaches considered sufficient. Yet, for
military applications where active cyber-attacks are a possibility, security is an important
consideration. Finally, the applications targeted by most existing offloading solutions have
limited requirements for reliability and robustness, while military applications have to guarantee
Quality-of-Service (QoS) requirements, such as deadlines for computations to complete and
system lifetimes.

2. Statement of the Scientific Problem

Offloading applications in a tactical environment is complicated by unreliable wireless
communication links—so that a phone that was connected to an HPC resource at one time may
not be connected at another; movement of the mobile devices and tactical HPCs resulting in the
closest HPC asset changing; and varying QoS requirements for applications—such as a deadline
by which an application has to complete or an energy budget that has to be met. The resource

2

allocation issue is further complicated by the fact that resource allocation decisions have to be
made in a distributed manner by the mobile device attempting to offload an application. In order
for such an allocation to be made efficiently, nodes have to be aware of the global state of the
network and the HPC assets. In order to minimize the impact on the battery life of the mobile
device, this global view has to be disseminated and updated with a minimum number of
transmissions.

3. Background and Related Work

Some areas of research related to the resource allocation problem for computation offloading
include task scheduling for heterogeneous computer systems, task allocation for mobile robots,
and resource allocation in wireless sensor networks. Briceno et al. (17, 18) describe techniques
to schedule tasks arriving in a heterogeneous computing system while ensuring the robustness of
the schedule. The algorithms are robust to unknown task arrival times and can satisfy constraints
such as ensuring high-priority tasks are executed before other tasks, yet requires a central task
allocator that is aware of all the tasks and the available resources at any point in time. Task
allocation in multirobot systems (19, 20) addresses the complexity associated with mobility, yet
do not have the constraint of a limited battery life that is faced by a resource allocator on a mobile
device. Mainland et al. (21) present an approach to allocate resources in a wireless sensor
network in a decentralized manner. In the event of no connectivity to HPC assets, we propose
using a scheme similar to that presented by Arslan et al. (22) or Shi et al. (23) to offload
computation to other mobile devices. This section describes some of this work and how they
relate to the task allocation problem we are addressing. We also point out why the existing
solutions are insufficient for our needs.

3.1 Centralized Resource Allocation

Researchers have proposed a number of methods to allocate resources to processes, such as
assigning processors to tasks or people to jobs, where a single entity, such as a server, is
responsible for scheduling the resources. Such approaches are mainly used in computing clusters
where all the tasks can be sent to a single machine, which knows the status of all the nodes in the
cluster, and can schedule the tasks based on a scheduling algorithm. In this section we
summarize some approaches for such centralized resource allocation.

Young et al. (24) describe an algorithm to schedule tasks on a heterogeneous cluster of machines

3

in order to maximize the number of task deadlines met without violating a system energy
constraint. The challenges addressed by the algorithms include uncertain task execution times
and the system being oversubscribed at certain times. The authors present a validated model of
robustness for the computing environment and adapt two existing heuristics to utilize robustness
and assign tasks without violating the energy constraints. In addition, the authors present a new
heuristic for task assignments and evaluate the three heuristics via simulation. The heterogeniety
of the cluster is due to differing numbers of processors per node, differing numbers of cores per
processor, the available processor frequencies, power consumption profiles, and power supply
efficiencies. The tasks are modeled as a dynamically arriving collection of independent tasks
with the mix of tasks unknown prior to arrival. The authors assume the existance of a probability
mass function (pmf) of execution times for tasks and state that such a pmf can be derived from
histograms of experiments, or past runs of tasks, or obtained using analytical techniques. The
sum of the random variable represented by a task’s pmf and its ready time, the time at which a
core can start executing it, is used as an estimation of the task completion time. This estimate is
used to calculate the robustness as the number of tasks expected to complete by their deadlines.
The two adapted heuristics are Shortest Queue (SQ) and Minimum Expected Completion Time
(MECT). The authors define a Lightest Load (LL) heuristic and a Random (RAND) heuristic as a
baseline. In an evalution involving the scheduling of a generalized filter mechanism, each
heuristic improved by 10% due to the robustness metric.

Briceno et al. (17) present a static load balancing scheme for the satellite data processing portion
of a space-based weather monitoring system. The load balancer has to allocate resources on a
heterogeneous distributed processing platform to two categories of tasks as they arrive.
High-Priority Tasks (HPTs) have to be allocated resources before Revenue Generation Tasks
(RGTs), yet sufficient RGTs have to be executed in order to minimize the time to reach a profit.
The problem is complicated by the fact that the arrival times of new data sets to be processed is
uncertain and the current data has to be processed before the next set arrives. Due to these
constraints, all tasks cannot be completed and the algorithm attempts to minimize the makespan
of all HPTs as well as the time to break even in terms of revenue.

Kuhn(25) presents a solution for the “assignment problem” using the work of two Hungarian
mathematicians: D. Konig and E. Egervary. The “assignment problem” assigns people to jobs
so that the sum of ratings, indicating the compatibility of a person and a job for instance, is
maximized. Thus, it attempts to find the best assignment of people to jobs. The author first
simplifies the problem to use only two ratings, 0 and 1, indicating whether or not a worker is
qualified for a job. He derives an algorithm from the proof of Konig to solve this problem. Then
he shows that the general problem of assignment can be reduced to this special case with a

4

computationally trivial procedure derived from the work of Egervary. The Simple Assignment
Problem, tackled by the author first, attempts to find the largest number of jobs that can be
assigned to qualified individuals without an individual being assigned more than one job. The
author views this problem from the point of view of a budget to account for the value of an
individual assigned to a job for which s/he is qualified. The budget assigns either 0 or 1 to each
individual and each job and the algorithm attempts to find an adequate budget where for every
individual qualified for a job, the individual, the job, or both, are assigned 1. The paper describes
the algorithm for finding an adequate budget and then transforming the general assignment
problem to the simple assignment problem efficiently, but no performance evaluation of the
algorithm is carried out.

There are a number of commercial cloud services such as Elastic Compute Cloud (EC2), which is
part of Amazon Web Services (AWS) and Windows Azure. In the open-source domain,
OpenStack(26) is being widely adopted as an Infrastructure as a Service (IaaS) for cloud
computing. The project launched by Rackspace Hosting and National Aeronautics and Space
Administration (NASA) aims to enable organizations to offer cloud-computing services running
on standard hardware. Similar to the research projects described above, these commercial and
open-source solutions also target domains very different from the tactical edge that motivates our
approach. The challenges and constraints faced in an environment such as a battlefield will not
be adequately served by systems that rely on stable hardware with reliable power and no mobility.

While some of the ideas presented in these papers and projects may be applicable in scheduling
applications once they are queued on an HPC asset, they do not consider some of the issues that
arise in a tactical cluster of mobile devices and Tactical High-Performance Computers (T-HPCs).
Our system has much greater heterogeneity than a cluster of servers with different configurations
of processors. Also, these approaches do not consider unreliable networks due to the servers
communicating over reliable wired links. Mobile devices in the battlefield are expected to have
unreliable communication and communication unreliability increases with complexity as tactical
cloudlets are introduced into the system. The centralized scheduler that these methods require is
not feasible in a tactical scenario and the mobility of our application is not an issue in these
approches.

3.2 Distributed Resource Allocation

Lim et al. (27) tackle the problem of allocating the limited sensing, processing, and
communication resources in a wireless sensor network, without a central coordinator, in order to
minimize costs and maximize network capability. The solution, Adaptive Distributed Resource

5

Allocation (ADRA), uses simple local actions performed by individual nodes for mode
management. This enables each node to adapt its operation over time in response to the status
and feedback of neighbors giving rise to the desired global behavior. Distributed real-time
resource allocation is complicated due to the following four reasons: (i) a large number of
decision makers, (ii) limited communication among decision makers, (iii) dynamically changing
environment, and (iv) a time constraint on the solution. ADRA is a heuristic to guide sensor
network nodes to efficiently allocate resources.

Mainland et al. (21) present Self-Organizing Resource Allocation (SORA), a novel algorithm to
allocate limited resources on sensor nodes in order to maximize the nodesâĂŹ contribution to the
network. SORA uses a virtual markets approach where nodes sell resources as goods with
associated prices that are set by the programmer. The network operates by nodes attempting to
maximize their profit while staying within an energy budget. Thus, nodes are modeled as
self-interested agents attempting to maximize their profit by performing local actions in response
to global price information. This approach allows resource constrained nodes to run a simple
cost-evaluation function that gives rise to sophisticated global behavior that can be controlled by
adjusting advertised prices. Nodes adjust their behavior by learning the utility of the resources
they can provide through payment feedback. This allows nodes to individually tune their
schedules using reinforcement learning. Nodes receive virtual payment for actions they take.
An action that is useful and contributes to the overall network goal is rewarded, while actions that
do not benefit the required global behavior of the network are not. Thus, over time nodes learn
which actions are profitable based on this feedback. A programmer can use the same mechanism
to retask a network by simply adjusting the prices of resources, or actions. SORA controls the
network lifetime by enforcing a local energy budget on node. The energy budget assumes that
nodes are aware of the amount of energy actions consume. The authors model the energy budget
using a token bucket where each node has a bucket of energy with a maximum capacity of C
joules that is replenished at a specified rate. The rate represents the average desired energy usage
rate. At each action taken by a node, the corresponding energy consumption is deducted from the
bucket. If the available energy is less than the amount needed for an action, the node goes to
sleep instead of performing it, thus conserving its battery. Using this simple approach, all a node
has to do is monitor its local state and the global price vector and periodically select the action that
maximizes its utility. The expected profit of actions varies over time due to price adjustments.
In order to enable nodes to explore options instead of settling on an action that maximized profit
at a particular time, SORA uses an ε-greedy action selection policy where the node selects the
action that maximizes the expected profit with a probability 1− ε for a small value of ε. But with
probability ε, the node selects an action at random from all of the available actions.

6

ADRA highlights the complications in distributed resource allocation and presents an approach
where simple local actions performed by nodes gives rise to a desired global behavior. SORA
presents an interesting approach to distributed resource allocation. While it is used to help nodes
decide which actions to take at any point in time, a similar virtual market approach can be used to
allow mobile devices to select T-HPCs to which tasks should be offloaded. For instance, the
price of offloading to an HPC asset could be inversely proportional to its current load, or the
quality of the network link to it, so that mobile devices do not overburden a single HPC machine
or select a machine with an unstable connection. In the processing phase, nodes receive
information on targets from their neighbors and fuse it with their own detected target information.
It then computes the change in utility based on the information from its neighbors and computes a
plan for its own sensor mode. Optionally, it can compute a plan for its neighbors’ modes. It,
then, sends the plan information to its neighbors. In the third phase, nodes receive plan
information from their neighbors and resolve their plans with their neighbors’ plans. Finally, it
executes the plan to change its own sensor mode.

3.3 Offloading to Mobile Devices

Arslan et al. (22) present a distributed computing infrastructure, called Computing While
Charging (CWC) that uses mobile devices to run tasks that are traditionally executed on servers.
The authors motivate the solution as a way to efficiently use wasted compute cycles on mobile
devices while they are charging overnight. The authors make four contributions: (i) profile the
charging behavior of real phone owners to show the viability of CWC, (ii) allow programmers to
execute parallelizable tasks on mobile devices easily, (iii) develop a simple task migration model
to resume interrupted tasks, and (iv) implement and evaluate a prototype of CWC on 18 Android
smartphones.

Shi et al. (23) describe Serendipity, which is a framework to enable the offloading of applications
from smartphones to other mobile devices. The authors present a job model where the basic job
component is a PNP-block composed of a preprocess program, n parallel task programs, and a
postprocess program. The preprocess program processes the input data, such as splitting the
input into multiple segments, and passes them to the parallel tasks. The postprocess program
processes the output of the tasks, such as collecting and collating them.

Serendipity represents jobs graphically as directed acyclic graphs (DAGs) of PNP-blocks and is
composed of a job engine, job profiler, job initiator, master, and a collection of workers. The job
engine takes a script specifying the DAG, the programs, their execution profiles (e.g., CPU
cycles) for all PNP-blocks, and the input data from the user. The authors do not describe how to

7

construct accurate execution profiles due to it being a challenging problem and out of the scope of
the paper. The job profiler checks the script and constructs a complete job profile, which
describes the execution time and energy consumption on every node, using the job execution
profile and device profiles of the nodes. If the script checks out, the job engine launches a new
job initiator, which store the job information in the local storage until the job completes. It is
responsible for launching PNP-blocks when their parents have completed by running the
preprocess program on a local worker and assigning a time-to-live (TTL), a priority, and a worker
to every task. The TTL specifies the time before the result of a task should return. If a task
misses its TTL, it is executed locally. The priority determines the relative importance of different
tasks composing a job. A worker can be a single node or a set of nodes. Tasks are disseminated
by the job engine, which is responsible for scheduling using information collected during the
initial contact with other mobile devices. During this handshaking phase, devices exchange their
profiles, residual energy, and a summary of tasks they have been assigned. The job engine can
decide whether to execute a task locally, or disseminate it to another device in order to reduce the
job completion time or conserve energy. The master receives a task from the job engine and
starts a worker for it. It monitors the execution and returns the output to the job initator when the
task finishes, using an underlying routing protocol such as Max-Prop. If an exception is thrown
during execution, the master reports it to the job initator who terminates the job and reports the
exception to the user. The authors assume all nodes are collaborative and trustworthy, but are
aware that in certain applications, malicious nodes may exist. They state that a reputation-based
trust protocol could be used to deal with such nodes.

The authors propose three different task allocation algorithms for Serendipity targeting three
different scenarios in terms of contact predictability and the availability of a control channel. For
the ideal network where contact between devices is predictable and there is a control channel the
Water Filling algorithm is used to schedule tasks. The Water Filling algorithm first estimates the
dissemination time for every task to every node. With this information and the estimated time to
execute the tasks on every node, the algorithm can estimate the time at which the task will finish.
With this time, the algorithm computes the time at which the output is sent back. Then, the
algorithm picks, for each task, the node that achieves the minimum task completion time. It
repeats the process for subsequent tasks taking the previous task schedule into account. The job
initiator reserves the task execution time on all selected nodes and shares this information with
other job initiators for future scheduling. For scenarios where contact is predictable but there is
no control channel, the authors present a Computing on Dissemination with predictable contacts
(pCoD) algorithm, since it is impossible to reserve task execution time in advance. Instead of
explicitly assigning tasks to nodes, Computing on Dissemination (CoD) opportunistically

8

disseminated tasks to nodes that the mobile device encounters until the tasks finish executing.
Based on the metadata exchanged when two phones meet, each phone decides which set of tasks
to disseminate to the other phone. This decision is made in an attempt to minimize the task
completion time of every task using the metadata from encountered nodes. CoD first estimates
the execution time of its carried tasks on the other node based on the job profiles and device
profile. For each task, it estimates the task completion time of executing locally as well as on the
encountered device. If the local execution time is greater than the remote execution time, the task
is assigned to the encountered node. For the third case, when contacts are unpredictable and
there is no control channel, the authors present CoD with unpredictable contacts (upCoD), which
constrains CoD with the lack of future contact information. In such a situation, the algorithm
ignores data transfer time and attempts to minimize the execution time of the last task. While
these algorithms schedule tasks in an attempt to minimize their execution time, they do not
consider energy. In order to extend them to be energy aware, the authors present a utility
function that can replace execution time in all three algorithms. The function attempts to
consume less energy while avoiding nodes with low energy. Serendipity is tested both on an
Emulab testbed as well as on Android phones.

CirrusCloud(28) extends the ideas of Serendipity, which targets offloading only to other mobile
devices, to a generalized cyber-foraging platform. It is a work-in-progress of a framework to
enable phones to offload to whatever resources they encounter—from central cloud computers to
cloudlets to mobile devices. CirrusCloud extends CloneCloud, which is a system that
automatically partitions mobile applications and offloads the computationally intensive aspects to
the Cloud, to be robust to intermittant connectivity. The authors present an algorithm that
chooses migration points of an application to minimize its execution time in the presence of
intermittant connectivity. CirrusCloud is evaluated on data collected on the connectivity between
a tablet that was carried on a bus and the WiFi access points on a campus. The authors show that
CirrusCloud outperforms CloneCloud in this scenario when offloading to a central cloud and
summarize Serendipity as the approach for offloading to mobile devices. The authors identify a
number of issues that they are working on, including how to provide continuous execution if a
mobile device loses contact with a cloudlet before it completes the processing of an allocated
task, and how to optimally use the mixture of available resource types to maximize benefit.

CWC requires a centralized server to schedule tasks on phones, which will not be feasibile in a
military scenario. Also, offloading in a tactical environment should occur when phones are being
used, not when they are charging. Serendipity and CirrusCloud provides a scheduler that could
be extended for offloading to HPC assets, yet leave a number of avenues open for further
exploration and optimization. One avenue that is critical to be addressed is security. A

9

reputation-based security scheme may be sufficient for the general public, but is not adequate in a
military environment. Such a setting requires a device to behave maliciously before it builds up a
bad reputation. In a military system, a malicious or malfunctioning device cannot be tolerated as
it could jeopardize a mission that relies on the mobile devices for computation. As Soldiers rely
more and more on their mobile devices it will become even more critical to ensure the system is
reliable, robust, and secure—a reputation-based system would not provide such guarantees.

4. Requirements

A system for battlefield computation on mobile devices would require the following
characteristics:

• General and extensible

– Provide an easy to use general purpose programming abstraction

– Independent of underlying hardware infrastructure

• User friendly

– Minimize burden on application developers

∗ Support common programming languages

∗ Provide a single-machine programming abstraction

– Minimize burden on end-users

∗ User interface that is easy to learn by a Soldier

∗ Abstract away underlying hardware and networks

– Maximize automation

∗ Automatically classify and decompose programs

∗ Automatically create and maintain network

∗ Automatically learn network behavior and environment characteristics

• Intelligent

– Identify changes in the communication environment, network topology, and
computation needs

10

– Tune algorithm parameters as topology and environment changes

– Satisfy QoS requirements such as lifetime, deadlines, accuracy, etc.

– If possible, modify the network topology to maximize performance and energy
efficiency

• Secure and private

– Protect from attacks such as jamming, Denial-of-Service (DoS), black hole,
man-in-the-middle, etc.

– Prevent the spread of malicious code such as viruses and worms

– Minimize the information that can be inferred through snooping and packet sniffing

In order to implement the envisioned system, a number of subsystems have to be built and
evaluated. These systems may already have been implemented in part and thus an attempt should
be made to leverage the state of the art. The following are some of the systems necessary for
computation on mobile devices in the battlefield:

1. Ad-Hoc communication: The battlefield computation network requires protocols to
enable mobile devices to communicate without relying on cell towers or Wi-Fi access
points. The network should be formed in an ad-hoc manner and be robust to changes in
connectivity. The same network should allow communication with the mobile HPC assets.
Possible approaches include multihop Bluetooth networks (29–31) and Wi-Fi direct.
Mobile Ad-Hoc Network (MANET) routing protocols (32–37) and delay-tolerant
networking (DTN) approaches (38–43) could be used to overcome the harsh wireless
environment that can be expected in varying tactical environments.

2. Network security: The network should be secure to malicious attacks and faults.
Wireless network security has been extensively studied and approaches for defense have
been proposed (44–48). The system’s vulnerabilities have to be identified and a suite of
defense mechanisms developed and evaluated. The security solution for the network could
be an integration of existing solutions, as long as all identified vulnerabilities are secured.

3. Intelligent offloading: As described above, a number of approaches to offloading
computation from mobile devices have been proposed. The system requires an offloading
approach that intelligently offload computation in an attempt to satisfy QoS requirements.
For instance, maximizing the lifetime of all devices, maximizing the lifetime of the
network, completing a computation before a deadline, etc. This requires a distributed

11

scheduling algorithm that enables a mobile device to decide if it should offload a task, and
if so, to which device or set of devices.

4. Intuitive user interface: The user interface should be easy to use via the small screens
of mobile devices for a Soldier who may not have extensive technical experience. A
Soldier should be able to obtain a result to a computation in a quick and efficient manner
while satisfying QoS requirements without compromising the rest of the network. For
instance, a single Soldier should not inadvertantly consume a majority of the bandwidth or
computation power, thus unwittingly launching a DoS attack on the network. At the same
time, a Soldier should be able to easily make QoS tradeoffs such as system lifetime for
computational speed.

5. General purpose programming abstraction and execution framework: The
offloading and scheduling infrastructure of the system should be sufficiently expressive to
support a large class of applications. The programming infrastructure should minimize the
burden placed on programmers to annotate code for decomposition or offloading.

5. Army Relevance

Over the last couple of years there has been an increase in Soldiers using smartphones on the
front lines. As more Army applications are developed, Soldiers will rely on their mobile devices
more as an essential tool in their arsenal. In order for Soldiers to be able to use their devices for
longer periods of time between recharges, offloading is being investigated as an option to
maximize battery life. An essential part of an offloading solution in a tactical environment is
intelligently selecting the resource to which an application is assigned.

6. Technical Challenges

The main technical challenges arise from the unpredictability of the system. Due to changes in
devices, connectivity, and applications to be offloaded, no prior information can be assumed and
system state has to be constantly updated. A scheduler for tactical computation offloading needs
the following:

• An algorithm to efficiently update all smartphones with the global system state

12

• An algorithm to decide the optimal location to execute a particular application

• A method to offload computation and receive results efficiently in an environment with
intermittent connectivity and high mobility

• An interface through which QoS constraints can be input

• A method for multihop communication over mobile devices

• A method for mobile devices to communicate with a tactical HPC asset

• An algorithm for efficient resource discovery

7. Conclusions

In order to enable battlefield computation on mobile devices a complete theory of distributed
computation over device-heterogeneous ad-hoc networks in the battlefield is necessary. These
devices can range from mobile devices to high-performance clusters. In addition, an algorithm to
efficiently allocate powered computing resources for offloading computation is necessary. The
algorithm should be able to satisfy QoS requirements, such as task execution deadlines, in an
environment with unreliable communication links and high device mobility.

13

8. References

1. Manning, P. Army Stronger with Androids. Fox News, 2012.

2. Mlot, S. Army to Deploy Android Smartphones in Oct.. PC Magazine, 2012.

3. Beidel, E. Soldiers Skeptical of Smartphones in Combat. National Defense Magazine, 2012.

4. Messmer, E. U.S. Army Wants Soldiers to Have Advanced Smartphones, Wireless Technology.
Network World 2011, .

5. Ackerman, S. It Only Took the Army 16 Years and 2 Wars to Deploy This Network. Wired, 2012.

6. Sengupta, S. U.S. Military Hunts for Safe Smartphones for Soldiers. The New York Times, 2012.

7. Ackerman, S. Army Shows Off Soldier Smartphone Beta. Wired, 2011.

8. Kerr, D. DARPA Fortifies Soldiers’ Smartphones Against Malware. CNET 2012, .

9. McGarry, B. Army Set to Introduce Smartphones Into Combat. http://www.military.com/, 2013.

10. Horn, L. Army Might Give Troops Smartphones Soon. PC Magazine, 2011.

11. Montalbano, E. Army Expanding Soldier Smartphone Program. Information Week, 2010.

12. Kemp, R.; Palmer, N.; Kielmann, T.; Bal, H. Cuckoo: A Computation Offloading Framework
for Smartphones. In Mobile Computing, Applications, and Services; Vol. 76; Gris, M., Yang, G.,
Eds.; Springer Berlin Heidelberg: 2012; pp 59–79.

13. Cuervo, E.; Balasubramanian, A.; Cho, D.-K.; Wolman, A.; Saroiu, S.; Chandra, R.;
Bahl, P. MAUI: Making Smartphones Last Longer With Code Offload. In Proceedings of the

8th International Conference on Mobile Systems, Applications, and Services, ACM: New York,
NY, USA, 2010.

14. Gordon, M. S.; Jamshidi, D. A.; Mahlke, S.; Mao, Z. M.; Chen, X. COMET: Code Offload by
Migrating Execution Transparently. In Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, USENIX Association: Berkeley, CA, USA, 2012.

15. Kosta, S.; Aucinas, A.; Hui, P.; Mortier, R.; Zhang, X. Thinkair: Dynamic Resource Allocation
and Parallel Execution in the Cloud for Mobile Code Offloading. In INFOCOM, 2012 Proceedings

IEEE, IEEE: Orlando, FL USA, March 2012.

16. Shires, D.; Henz, B.; Park, S.; Clarke, J. Cloudlet Seeding: Spatial Deployment for High Per-
formance Tactical Clouds. In PDPTA’12, WORLDCOMP’12: Las Vegas, NV, USA, July 2012.

14

17. Briceño, L. D.; Siegel, H. J.; Maciejewski, A. A.; Oltikar, M.; Brateman, J.; White, J.; Martin, J.;
Knapp, K. Heuristics for Robust Resource Allocation of Satellite Weather Data Processing on a
Heterogeneous Parallel System. Parallel and Distributed Systems, IEEE Transactions on 2011,
22 (11), 1780–1787.

18. Briceno, L. D.; Khemka, B.; Siegel, H. J.; Maciejewski, A. A.; Groër, C.; Koenig, G.; Okon-
ski, G.; Poole, S. Time Utility Functions for Modeling and Evaluating Resource Allocations in
a Heterogeneous Computing System. In Parallel and Distributed Processing Workshops and Phd

Forum (IPDPSW), 2011 IEEE International Symposium on, Institute of Electrical and Electronics
Engineers (IEEE): Anchorage, AK, USA., May 2011 Authorized distributor of all IEEE proceed-
ings.

19. Gerkey, B. P.; Matarić, M. J. A formal Analysis and Taxonomy of Task Allocation in Multi-Robot
Systems. The International Journal of Robotics Research 2004, 23 (9), 939–954.

20. Matarić, M. J.; Sukhatme, G. S.; Østergaard, E. H. Multi-Robot Task Allocation in Uncertain
Environments. Autonomous Robots 2003, 14 (2), 255–263.

21. Mainland, G.; Parkes, D. C.; Welsh, M. Decentralized, Adaptive Resource Allocation for Sensor
Networks. In Proceedings of the 2nd Conference on Symposium on Networked Systems Design &

Implementation; Vol. 2, USENIX Association: Berkeley, CA, USA, 2005.

22. Arslan, M. Y.; Singh, I.; Singh, S.; Madhyastha, H. V.; Sundaresan, K.; Krishna-
murthy, S. V. Computing While Charging: Building a Distributed Computing Infrastructure Using
Smartphones. In Proceedings of the 8th international conference on Emerging networking experi-

ments and technologies, ACM: New York, NY, USA, 2012.

23. Shi, C.; Lakafosis, V.; Ammar, M. H.; Zegura, E. W. Serendipity: Enabling Remote Computing
Among Intermittently Connected Mobile Devices. In Proceedings of the thirteenth ACM interna-

tional symposium on Mobile Ad Hoc Networking and Computing, ACM: New York, NY, USA,
2012.

24. Young, B.; Apodaca, J.; Briceño, L.; Smith, J.; Pasricha, S.; Maciejewski, A.; Siegel, H. J.;
Khemka, B.; Bahirat, S.; Ramirez, A.; Zou, Y. Deadline and Energy Constrained Dynamic Re-
source Allocation in a Heterogeneous Computing Environment. The Journal of Supercomputing

2013, 63 (2), 326-347.

25. Kuhn, H. W. The Hungarian Method for the Assignment Problem. Naval Research Logistics

Quarterly 2006, 2 (1-2), 83–97.

26. Cloud Software, openstack. http://www.openstack.org/, 2013.

27. Lim, H. B.; Lam, V. T.; Foo, M. C.; Zeng, Y. Adaptive Distributed Resource Allocation in
Wireless Sensor Networks. In Mobile Ad-hoc and Sensor Networks; Vol. 4325, Springer Berlin
Heidelberg: 2006; pp 770–781.

15

28. Shi, C.; Ammar, M. H.; Zegura, E. W.; Naik, M. Computing in Cirrus Clouds: The Challenge
of Intermittent Connectivity. In Proceedings of the First Edition of the MCC Workshop on Mobile

Cloud Computing, ACM: New York, NY, USA, 2012.

29. Petrioli, C.; Basagni, S.; Chlamtac, M. Configuring BlueStars: Multihop Scatternet Formation
for Bluetooth Networks. Computers, IEEE Transactions on 2003, 52 (6), 779–790.

30. Li, X.; Wu, C.; Wang, X.; Gu, M.; Li, X.-Y.; Xuan, D. BlueSky: Realizing Buried Potential of
Bluetooth to Sustain a Large-Scale Multi-Hop Network. ArXiv e-prints 2013, ; Provided by the
SAO/NASA Astrophysics Data System.

31. Basagni, S.; Petrioli, C. Multihop Scatternet Formation for Bluetooth Networks. In Vehicular

Technology Conference, 2002. VTC Spring 2002. IEEE 55th; Vol. 1, IEEE: Birmingham, AL,
May 2002.

32. Gorantala, K. “Routing Protocols in Mobile Ad-Hoc Networks”, Master’s thesis, Umea University,
2006.

33. Royer, E. M.; Toh, C.-K. A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless
Networks. Personal Communications, IEEE 1999, 6 (2), 46–55.

34. Hong, X.; Xu, K.; Gerla, M. Scalable Routing Protocols for Mobile Ad-Hoc Networks. Network,

IEEE 2002, 16 (4), 11–21.

35. Singh, S.; Woo, M.; Raghavendra, C. S. Power-Aware Routing in Mobile Ad-Hoc Networks.
In Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and

Networking, ACM: New York, NY, USA, 1998.

36. Akkaya, K.; Younis, M. A Survey on Routing Protocols for Wireless Sensor Networks. Ad-Hoc

Networks 2005, 3 (3), 325–349.

37. Taneja, S.; Kush, A. A Survey of Routing Protocols in Mobile Ad-Hoc Networks. International

Journal of Innovation, Management and Technology 2010, 1 (3), 2010–0248.

38. Musolesi, M.; Mascolo, C. Car: Context-Aware Adaptive Routing for Delay-Tolerant Mobile
Networks. Mobile Computing, IEEE Transactions on 2009, 8 (2), 246–260.

39. Mascolo, C.; Musolesi, M. SCAR: Context-Aware Adaptive Routing in Delay Tolerant Mobile
Sensor Networks. In Proceedings of the 2006 International Conference on Wireless Communica-

tions and Mobile Computing, ACM: New York, NY, USA, 2006.

40. Musolesi, M.; Hailes, S.; Mascolo, C. Adaptive Routing For Intermittently Connected Mobile
Ad-Hoc Networks. In World of wireless mobile and multimedia networks, 2005. WoWMoM 2005.

Sixth IEEE International Symposium on a, IEEE Computer Society: Washington, DC, USA,
2005.

41. Pelusi, L.; Passarella, A.; Conti, M. Opportunistic Networking: Data Forwarding In Discon-
nected Mobile Ad-Hoc Networks. Communications Magazine, IEEE 2006, 44 (11), 134–141.

16

42. Wang, Y.; Wu, H. Delay/fault-tolerant Mobile Sensor Network (dft-msn): A New Paradigm For
Pervasive Information Gathering. Mobile Computing, IEEE Transactions on 2007, 6 (9), 1021–
1034.

43. D’Souza, R.; Jose, J. Routing Approaches in Delay Tolerant Networks: A Survey. International

Journal of Computer Applications 2010, 1 (17), 8–14.

44. Kannhavong, B.; Nakayama, H.; Nemoto, Y.; Kato, N.; Jamalipour, A. A Survey Of Routing
Attacks in Mobile Ad-Hoc Networks. Wireless Communications, IEEE 2007, 14 (5), 85–91.

45. Karmore, P.; Bodkhe, S. A Survey on Intrusion in Ad-Hoc Networks and its Detection Measures.
International Journal on Computer Science and Engineering 2011, 3 (5), 1896–1903.

46. Jhaveri, R. H.; Patel, S. J.; Jinwala, D. C. D.O.S. Attacks in Mobile Ad-Hoc Networks: A Sur-
vey. In Advanced Computing & Communication Technologies (ACCT), 2012 Second International

Conference on, Institute of Electrical and Electronics Engineers (IEEE): Rohtak, Haryana, India,
January 2012.

47. Kaur, G.; Jain, V.; Chaba, Y. Wormhole Attacks: Performance Evaluation of On-Demand
Routing Protocols in Mobile Ad-Hoc Networks. In Information and Communication Technologies

(WICT), 2011 World Congress on, IEEE: Mumbai, India, December 2011.

48. Mamatha, G.; Sharma, D. S. A New Combination Approach to Secure MANETS Against Attacks.
International Journal of Wireless & Mobile Networks (IJWMN) 2010, 2, 1–10.

17

List of Symbols, Abbreviations, and Acronyms

HPC High Performance Computer

GPS Global Positioning System

PC Personal Computer

AI Artificial Intelligence

QoS Quality of Service

pmf Probability mass function

SQ Shortest Queue

MECT Minimum Expected Completion Time

LL Lightest Load

RAND Random

HPT High-Priority Task

RGT Revenue Generation Task

EC2 Elastic Compute Cloud

AWS Amazon Web Services

IaaS Infrastructure as a Service

NASA National Aeronautics and Space Administration

T-HPC Tactical High Performance Computer

ADRA Adaptive Distributed Resource Allocation

SORA Self-Organizing Resource Allocation

CWC Computing While Charging

DAG Directed Acyclic Graph

18

TTL Time-to-live

pCoD Predictable contacts

CoD Computing on Dissemination

upCoD Unpredictable contacts

DoS Denial-of-Service

MANET Mobile Ad-Hoc Network

DTN Delay-Tolerant Networking

19

NO. OF
COPIES ORGANIZATION

1
(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO LL
IMAL HRA MAIL & RECORDS MGMT

1
(PDF)

GOVT PRINTG OFC
A MALHOTRA

5
(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIH S
TAMIM SOOKOOR
DALE SHIRES
DAVID BRUNO
RONDA TAYLOR
SONG PARK

20

INTENTIONALLY LEFT BLANK.

21

